PHYSICAL REVIEW E 72, 031113 (2005)

System-size resonance in a binary attractor neural network

M. A. de la Casa,"* E. Korutcheva,"' J. M. R. Parrondo,” and F. J. de la Rubia'
lDepartamenlo Fisica Fundamental, Universidad Nacional de Educacion a Distancia, c¢/Senda del Rey 9, 28080 Madrid, Spain
2Gmpo Interdisciplinar de Sistemas Complejos (GISC) and Departamento Fisica Atomica, Molecular y Nuclear,
Universidad Complutense, 28040 Madrid, Spain
(Received 31 May 2005; published 30 September 2005)

System size resonance (SSR) is a phenomenon in which the response of a system is optimal for a certain
finite size, but poorer as the size goes to zero or infinity. In order to show SSR effects in binary attractor neural
networks, we study the response of a network, in the ferromagnetic phase, to an external, time-dependent
stimulus. Under the presence of such a stimulus, the network shows SSR, as is demonstrated by the measure
of the signal amplification both analytically and by simulation.
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I. INTRODUCTION

In the last years, a huge amount of literature has been
accumulated on the counterintuitive effect of the noise as a
source of order. This ordering effect has been reviewed in the
context of both zero-dimensional systems [1] and spatially
extended systems [2]. Of special interest for the present pa-
per is the phenomenon of stochastic resonance in which the
response of a nonlinear system to the action of a weak signal
is enhanced, and not hindered as it could be naively ex-
pected, by the addition of an optimal amount of noise [3,4].
Closely related to stochastic resonance is another phenom-
enon that recently appeared in the literature, the so-called
system size resonance (SSR) [5]. In SSR, the presence of
noise in a system of finite size close to a second-order phase
transition gives rise to the appearance of an optimal size for
the system to adapt to an external field [5-7]. SSR has at-
tracted some attention in the last couple of years [8—-11]. A
general nonequilibrium potential framework was recently
proposed by the study of SSR [12]. It was shown that the
analysis of the potential can give a clear physical interpreta-
tion of the phenomenon. It has been shown that the SSR
even arises in opinion formation models [13].

Inspired by the applications of stochastic resonance to
cognitive processes [ 14-18], as well as the modulelike orga-
nization of the neurons in the human brain, we are searching
for a tradeoff at mesoscale level between the size of these
formations and the performance of the system, which forms
the basis of the principles of self-organization. We show that
SSR can operate in a model of associative memory as is the
Hopfield binary neural network [19], improving its ability to
follow a time-dependent stimulus. We focus on the simplest
case of a Hopfield network storing two patterns presented
periodically to the system and show that there is always an
optimal size of the neural network, for which the amplifica-
tion of the signal is maximal. The model we chose gives a
clear physical interpretation of the SSR phenomenon and
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serves as a basis for the study of the processes in more com-
plex real systems at mesoscopic level.

The paper is organized as follows. In Sec. II we introduce
the model. The corresponding thermodynamic analysis is
given in Sec. III and the analytical derivation of the phenom-
enon of system size resonance is presented in Sec. IV. In Sec.
V we analyze the results obtained both analytically and by
simulation. Finally, in Sec. VI we give our conclusions.

II. THE MODEL

In this paper, we study the presence of SSR effects in
Hopfield’s model of a binary attractor neural network [19],
given by the following Hamiltonian:

1
Nig; ' i
where N is the number of (binary) neurons, s;, i=1,...,N

and &, i=1,....N, u(t)=1,2 are two (binary) patterns the
system is trained with.

The neurons are coupled to each other according to the
Hebb’s rule [20] by

2
Jy= 2 & (2)
u=1

The first term on the right-hand side of Eq. (1) gives the
coupling between pairs of neurons. The second term gives
the coupling with an external field of intensity 4, which is
periodic in time. The action of this field is to periodically
drive the system to the state s,:g,.‘ for a time interval T and
then to s,-=§l2 during another interval 7. This field plays the
role of an external dynamic stimulus driving the network to
remember periodically the two patterns.

Another relevant parameter is the Hamming distance be-
tween the patterns, defined as

N
_L 1_ 2
d—ZNi:Ellfi &l. (3)

The distance d is the fraction of sites in which both patterns
are different. It varies between 0, when both patterns are
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equal at every site, and 1 when they are different.

This system has been extensively studied in the literature
[21], mainly in the thermodynamic limit (N — ). The role of
a finite size has almost only been studied in order to find
finite size corrections to infinite-size results [22]. Meanwhile
we will keep N explicitly finite and will focus on the effect
of the finite size on the response of the system to an external
time-dependent stimulus.

III. THERMODYNAMICAL ANALYSIS

In the thermodynamic limit, N— oo, the model described
by Eq. (1), undergoes a second-order phase transition at a
critical temperature B.=1 [23]. The results presented in [5]
on the Ising model and the ¢* model suggest that this phase
transition could be a good test ground to study the appear-
ance of SSR effects in a broader and richer context.

The first step in our study of the system is to obtain an
exact expression for the free energy of the system in terms of
the distance d and the order parameter, which is the usual
overlap between patterns and neurons,

1
m,= NE. &s;. (4)

The expression for the free energy of the system, including
the action of the stimulus, reads

N
F=- E(m% + m%) = hm .,

N(1-d)

1
~ ogl| N
B e S+ +2(1- )

Nd
X

N , 5
Z(ml—m2+2d) ( )

where the second term is the entropic contribution. However,
the two order parameters m; and m, are not independent. A
more convenient pair of magnitudes can be defined as fol-
lows: r is the fraction of bits where {s;} coincides both with
pattern 1 and 2; p is the fraction of bits where {s;} coincides
with pattern 1 and differs from pattern 2. In Fig. 1 we have
plotted a schematic representation of the two patterns and the
quantities p and r. Taking into account that m,, is the fraction
of common bits minus the fraction of different bits between
the network and pattern &, from Fig. 1 one immediately

obtains
my=2r+2p-1;, my,=2r+2d-2p-1. (6)

Also from this figure, it is easy to see that r and p are inde-
pendent and can take on any value in the rectangle: r
€[0,1-d], p €[0,d]. Moreover, in terms of r and p, the free
energy of the system for 2=0 can be written as

F=F,+F, (7

with
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FIG. 1. Schematic representation of the two patterns and the
state of the network. The upper part of the patterns represents the
N(1-d) coincident bits between the patterns. Nr is the number of
bits that the network has in common with both patterns, whereas Np
is number of bits in the network coinciding with pattern 1 and
different from pattern 2.

( 1—d>21 (N(l—d))
F,==4N\r———] ——log

2 B Nr
d\? 1 Nd
fp=—4N<p—E> —Elog<Np>. (8)

At zero temperature, the free energy has four equilibria,
located at the corners of the available rectangle in the param-
eter space, i.e., r=0, 1 —d, and p=0,d. Two of the four equi-
librium states, r=1-d, p=0,d, exactly reproduce the two
patterns. The other two minima, r=0, p=0,d, are the nega-
tives of the stored patterns. Figure 2(a) shows a typical land-
scape of the free energy in the (r,p) plane for low tempera-
tures (B=2, d=0.7).

If we increase the temperature, the four minima shift to
the middle point of the rectangle r=(1-d)/2 and p=d/2. In
the thermodynamic limit, the system undergoes two second-
order phase transitions at B.,=1/(2-2d) and B,.,=1/(2d).
In each transition the minima collide into either r=(1
—d)/2 or p=d/2, which corresponds, respectively, to a com-
pletely disordered state in the region of common and distinct
bits between the two patterns (see Fig. 1). The ability of the
network to distinguish between the two patterns sensibly de-
pends on which of the two transitions occurs first. The phase
diagram of the system can be seen in Fig. 3.

For d=0, B.,=x, as the two patterns coincide and there
are no different fractions of bits between them for any finite
temperature. The same is true for d=1 when B.,=%, as there
are no common fractions between {s;} and both patterns.

If d<0.5, i.e., if the two patterns share more than one-
half of the bits, B.,> B.,. Consequently, when the tempera-
ture increases from absolute zero the first transition occurs
for the variable p, i.e., in the region of distinct bits. This
means that for temperatures 8 e[, .8, ], the system only
exhibits two minima with p=d/2, i.e., with m,=m, [see Eq.
(6)]. One of these two minima approximately reproduces the
common bits of the two patterns, whereas the distinct bits are
completely disordered. The other minimum is just the nega-
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FIG. 2. The free energy landscape for 2=0 and N=10000. (a) Low temperature, B=2, d=0.7: The free energy presents four minima,
corresponding to the two stored patterns and their respective negatives. (b) Medium temperature, similar patterns, =1, d=0.3: There are
two equilibrium states with p=d/2, i.e., with m;=m,. One of the minima reproduces the common bits of the two patterns whereas the other
one is its negative. (c) Medium temperature, dissimilar patterns, =1, d=0.7: There are two equilibrium states with r=(1-d)/2, i.e., with
m;=-m,. Bach minima reproduces the distinct bits of each pattern. (d) High temperature, 3=0.5, d=0.7: The only minimum is the
disordered state with r=(1-d)/2, p=d/2, i.e., with m;=m,=0. All figures in this paper are presented in dimensionless units.

4 Minima

s L | L L
0 0.25 0(.15 0.75 1

FIG. 3. Phase diagram of the system. For high B8 (low tempera-
ture), the free energy has four minima. As the value of 3 decreases,
there are two phase transitions: one for r that occurs in the first
place for d>0.5; the other one for p that takes place first for d
<0.5. For values of 8 low enough, after both transitions have oc-
curred, the free energy is a paraboloid with only one minimum.

tive image of the first. Consequently, the system has mixed
up the two patterns and it is unable to distinguish between
them. The free energy landscape corresponding to this situa-
tion is plotted in Fig. 2(b).

On the other hand, if d> 0.5, the two patterns are different
enough to be distinguished even for intermediate tempera-
tures. In this case B.,> B, ,, and the first transition occurs at
B, Therefore, if Be[B, ,.B.,]. we have two minima with
r=(1-d)/2, i.e., with m;=—m,. One of the two minima re-
produces the distinct bits of pattern 1 and the other one the
distinct bits of pattern 2. For both minima, the common bits
are disordered. Although the system does not exactly repro-
duce the stored patterns, it perfectly distinguishes between
them. The free energy in this case is plotted in Fig. 2(c).

Finally, above the maximum critical temperature, the only
equilibrium state is completely disordered: r=(1-d)/2 and
p=d/2, or m;=m,=0, as shown in Fig. 2(d).

The full phase diagram (Fig. 3) shows the four different
phases the system can display. We will focus on the region
labeled “2 minima” where each minima corresponds to one
of the patterns, as opposed to region “2’'”, where the attrac-
tors do not reproduce the patterns accurately. It is also rel-
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FIG. 4. (Color online) Free energy barriers AF, and AF, be-
tween the minima and the maxima, for d=0.6, N=100. As S de-
creases (temperature increases), both barriers decrease continuously
to zero. For this value of d, the first transition to take place is for the
variable r.

evant to look at the behavior of the free energy barriers the
system has to jump over to complete a transition between the
minima (see Fig. 4). As B increases (or, conversely, the tem-
perature decreases), the barrier between the attractors is
higher, making the resonance more difficult (see later). Only
for values of 8 between B, and S, is the system inside that
region.

IV. ANALYTICAL DERIVATION OF THE SYSTEM SIZE
AMPLIFICATION

We have calculated an analytical expression for the signal
amplification. Our scheme follows the general outline of the
two-state model from [25,26]. The first step is to consider the
time evolution of the order parameters as a stochastic process
and to write a master equation for the time evolution of the
order parameters, with the two-state approximation: at any
time, either m;=m, (with probability n,), or m;=m_ (with
probability n_). The master equation is

ny=—W.on,+Wyn_,

n_=—-W.n_+W_n,, 9)

W, (1) being the transition probability densities fo the states
m,. Using the normalization condition n,+n_=1, Egs. (9)
can be reduced to two separated first order, linear ordinary
differential equations. The problem is then solved by provid-
ing an ansatz for the transition probability densities:

exp(xBNdh) if u(t)=1,
exp(+ BNdh) if u(r)=2.
(10)

W.(1) = C exp(- BAF) X {

The first exponential factor gives the purely noise-induced
transition probability and the second one gives the (time-
dependent) contribution of the stimulus. The factor C, possi-
bly depending on B and d, is the only fit parameter in the
theory.
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It will be useful in the following discussion to define the
function:

W=W, + W_=c exp(— BAF)cosh(BhdN). (11)

By using Fourier series, the square-wave-like form of W,
is tackled and Egs. (9) can be solved. The asymptotic (fy—
—o0) solution found is

[}

us 1 4C exp(— BAF)sinh(BNdh)
l’l+ (t) =+ E T ) 32
2 5 Qk=1D)mW2+ (2k-1)’Q

- & (12)

and the total exact solution is

sin[ (2k - 1)Q¢

I’l+(l‘) = nis(t) + eXP[— W(t - tO)] X 5m0,m+

“. 4C exp(— BAF)sinh(BNdh)
=1 2k = 1)mW?+ (2k - 1)2Q?

sin[(2k = 1)Q¢,

—d&]—% : (13)

From Eq. (13) it is possible to obtain the time-dependent
moments of the order parameters, and particularly the first
two moments (m(¢)) and (m(t)m(z+7)). The second moment,
or self-correlation, is particularly important since, by using
Wiener-Khinchin theorem [27], we can obtain the power
spectra S,,(w) and the signal amplification 7. However, the
physically meaningful result is the time average of the self-
correlation:

2
(m(Om(t+ 1) = AI{ 1 — tanh?(BNdh)

-2yl

2
Xexp(— W) + zA_ﬂz tanh?(BNdh)
< W2 cos[(2k — 1)Q7]

XE (k-1 [W? + 2k - 1)*Q%]

(my +m_)?
+ (14)
4
where the overline denotes time averaging.

The final expression for the power spectrum, from the
Wiener-Khinchin theorem, is

AZ
S, (w) = " 1 — tanh?(BhdN)

X{l 20 h(wwﬂ W
—_— n _—
71'Wa 2Q) w*+ W?

oo

2A2t h2(BhdN) >, i
il W
x A o k=12 [W? + (2k-1)°Q?]
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FIG. 5. The graph shows the time evolution of the order param-
eter m;. The first evidence of system-size resonance is clear. The
solid thin line is the order parameter obtained from numerical simu-
lations. The thick segments show the time intervals in which the
external stimulus drives the system to retrieve one or the other
pattern. The parameters values are 8=1.2, d=0.6, T=100, and &
=0.01. (a) N=20; (b) N=60; and (c) N=120.

X (ow-2k-1)Q]+ do+ (2k+1)Q])

(m, +m_)

2
5 S w). (15)

The free-energy barrier between the attractors, AF, needs
to be calculated in order to solve the problem. The extrema
of Eq. (7) are obtained by minimizing F numerically for
every value of N, d, and . The analytical curves in Figs. 6
and 10 are obtained fitting these numerical values to an ex-
pression linear in N. One can observe a good agreement be-
tween the numerical and analytical results. We also obtained
from this minimization process the distance between the at-
tractors, denoted by A.

O+Aw
ZJ Sp(w)dw
(

N-Aw 2 2

_ét h2( th)—
= PN Gy

(16)

= lim
7 Aw—0 /’12

The quantity, 7, in Eq. (16) presents our measure of stochas-
tic resonance [3,5].

V. RESULTS

To complete the analysis, we have also performed out-of-
equilibrium Monte Carlo simulations [24] of the Hamiltonian
(1). We have used the standard Metropolis acceptance rates
in a single spin-flip update scheme. We have simulated
100 000 sweeps of the time evolution of the system for every
parameter set. In order to compare with the theoretical re-
sults, the order parameters m,(f) as functions of time are
obtained from the simulation. The power spectra, S,,(w), and
the signal amplification 7 [3] are then evaluated.

In a certain range of parameter space, the numerical simu-
lations performed show the presence of SSR effects in the
model (1). A relevant example is presented in Fig. 5. The
intuitive explanation of the performance of the system is the
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FIG. 6. The signal amplification, 7, vs the size of the system, N.
The result of the numerical simulation is represented by dots while
the analytical result is the solid line. 7=500, S=1.2, and ~1=0.01.
(a) d=0.6 and (b) d=0.8. For larger values of d, the maximum is
shifted to the left.

following. For small N, the fluctuations are strong, therefore
the system output is too noisy and the system is unable to
retrieve the patterns in real time. The hopping between the
attractors is random and not synchronized with the shifts in
the external stimulus. For very large N, the fluctuations are
weak and the system resides in a given attractor for too long,
while the stimulus has performed several shifts. However,
for intermediate values of N around the optimal value, the
system follows the oscillations of the external stimulus and
the appropriate pattern for every half-period is retrieved very
precisely.

The resonant behavior of the signal amplification is pre-
sented in Fig. 6. It is clear from the figure that there is a
maximum of the signal amplification at a finite intermediate
size. The results of the numerical simulation (dots) match
very precisely the analytical curve (solid line), given by Eq.
(16).

The difference between both panels of Fig. 6 is due to a
different value of d, while the other parameters (), i, and 8
are equal. A larger value of d implies a higher energy barrier
between the attractors, see Eq. (7). Therefore a larger noise
intensity is needed to achieve the maximum of the reso-
nance. This larger noise requires smaller values of N. There-
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FIG. 7. (Color online) The effect of the temperature on 7. In this
plot, d=0.6, T=100, and /£=0.01. For values of 8 smaller than
B.,=0.833, there can be no resonance, $=0.8, left triangles. Below
the critical point, the higher the temperature, the stronger the reso-
nance is. S=1.1, up triangles; BS=1.2, squares; even in the region of
four minima, for values of g higher than 8, ,=1.25 (8=1.3, up-
triangles) the resonance is present. Higher values of 8 would maxi-
mize the resonance for smaller values of N until the resonance
disappears for high enough .

fore the maximum of 7 is shifted towards smaller N, and its
maximum value, achieved in the resonance, is reduced.

It is also interesting to study the response of the system as
a function of the other relevant parameters B3, d, and (). We
now proceed to comment on the different results obtained
concerning these dependencies. It is to be expected that in-
creasing the temperature (decreasing ) will enhance the ef-
fect, shifting the maximum towards higher N, in order to
keep the effective noise intensity (8N)~! constant. However,
this tendency has its limits: we must operate below the criti-
cal point to observe bistable behavior and, therefore, SSR
(see Fig. 7). On the other hand, decreasing the temperature
(increasing B) will force the maximum towards lower N and,
eventually, the resonance disappears.

The effect of changing d is even more interesting. In Fig.
8 it is visible that there is also resonant behavior as a func-
tion of d. In the graph, 7 is normalized by d” to take into
account that, given that the distance between attractors A is
approximately 2d, the amplitude in the oscillations of the
order parameters is also of order 2d. Therefore # is propor-
tional to d* as a null hypothesis. Even when this trivial de-

30 T T T

250 . . -

200 . . i

wd
&
(=]
T
L

FIG. 8. The resonant behavior of 7 as a function of d (see text
for more details). 7=100, N=100, 8=1.2, and h=0.1.
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FIG. 9. Spectral amplification vs N for different values of the
stimulus intensity, 4. As h increases from low values, the resonant
peak becomes wider and lower until the resonance disappears. 7'
=100, BS=1.2, and d=0.6.

pendency is removed, an optimal d is observed for every
value of N and B and the functional form of the dependency
tends to a certain curve in the thermodynamic limit. This
resonant behavior appears due to the modulation in the en-
ergy landscape introduced by d. Since the energy barrier be-
tween the attractors can be demonstrated to depend quadrati-
cally on d, changing d modulates the factor SAF as if we
were changing the noise intensity relative to AF. Therefore it
is to be expected to observe an increased response as well as
a shifting of the maxima to the left, when N is increased.

The resonant behavior is strongest, as usual when dealing
with stochastic resonance, for small values of the external
stimulus, /1 (see Fig. 9). Higher values of 4 diminish the
effect until it entirely disappears for high enough 4.

Finally the dependence of 7 on the stimulus frequency ()
is shown in Fig. 10. It shows the Lorentzian dependence
expected in SR [25,28]. The good agreement between theory
and numerical simulations is observed as well.

VI. CONCLUSIONS

In this paper we presented theoretical calculations, based
on a two-state model, showing the presence of system size
resonance (SSR) effects in attractor neural networks. The

150 ; , . | ; |

100

50

) T ool 002 003 004
Q

FIG. 10. The behavior of 7 with the frequency of the external
stimulus, ) shows the expected Lorentzian form, as in usual sto-
chastic resonance. Again, the dots represent the numerical simula-
tions and the solid line the analytical results. In this plot, d=0.6,
N=50, and B=1.2.
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only approximation required is the two-state assumption, all
other information is obtained from exact thermodynamical
calculations. The results have been also compared with
Monte Carlo simulations and we have found a very good
agreement. The resonance is made evident by the behavior of
the signal amplification 7 as a function of the size of the
system as well as by the time evolution of the order param-
eters. Therefore, for a given external, time-dependent stimu-
lus, there is an optimal size of the network in which there is
maximal synchronization of the system to the evolving
stimulus.

The behavior of 7 versus the other relevant parameters of
the system was also studied. As expected from the results of
[5], the resonance only appears in the ferromagnetic phase,
for high enough inverse temperature 8. The dependence with

PHYSICAL REVIEW E 72, 031113 (2005)

the frequency of the external stimulus () is the expected
Lorentzian one. Also in accordance with the previous litera-
ture [25], the resonance is only present for the small ampli-
tude of the stimulus 4. A unique feature of SSR in attractor
neural networks is the peculiar nonmonotonous behavior of
n versus the Hamming distance d, which is, however, an-
other natural consequence of the presence of SSR in the sys-
tem.
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